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The Euler-alpha and the vortex blob model are two different regularizations of incom-
pressible ideal fluid flow. Here, a regularization is a smoothing operation which
controls the fluid velocity in a stronger norm than L2. The Euler-alpha model is the
inviscid version of the Lagrangian averaged Navier–Stokes-alpha turbulence model.
The vortex blob model was introduced to regularize vortex flows. This paper presents
both models within one general framework, and compares the results when applied
to planar and axisymmetric vortex filaments and sheets. By certain measures, the
Euler-alpha model is closer to the unregularized flow than the vortex blob model. The
differences that result in circular vortex filament motion, vortex sheet linear stability
properties, and core dynamics of spiral vortex sheet roll-up are discussed.

1. Introduction
This paper presents a numerical comparison of weak vorticity solutions for two

regularizations of the Euler equations, namely the Lagrangian averaged Euler-alpha
model and the vortex blob model. The work is motivated by the computation of
vortex sheet motion. A vortex sheet is an inviscid model for a shear layer which
approximates the layer by a surface. The vorticity is a delta function on the surface
and the tangential velocity component is discontinuous across it. The governing Euler
equations reduce to an integro-differential equation for the evolution of the vortex
sheet position, thus reducing the problem dimension by one. However, a numerical
discretization by the point vortex approximation breaks down after a finite time. It has
been established that even with analytic initial data, the sheet develops a singularity
in finite time in which its curvature blows up (Moore 1979; Meiron, Baker & Orszag
1982; Krasny 1986a; Shelley 1992; Caflisch et al. 1993; Cowley, Baker, & Tanveer
1999). The point vortex approximation converges before this critical time (Caflisch,
Hou & Lowengrub 1999), but no longer converges at later times (Krasny 1986a). The
approach taken to compute the motion past singularity formation is to regularize the
flow by introducing a numerical smoothing parameter into the governing equations.
The vortex sheet is defined as the limit of zero smoothing parameter, that is, a limit
of a sequence of approximate solutions. For a discussion of the theory of these
approximate-solution sequences, see Majda & Bertozzi (2002).

The regularizations considered are typically inviscid. We note that in a physical
problem, the regularizing mechanism is by fluid viscosity and the limit of interest
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is that of vanishing viscosity. However, solving the full viscous problem for small
viscosity is highly computationally expensive. The vortex sheet model and its inviscid
regularizations are of intrinsic mathematical interest, but also provide a computation-
ally more feasible approach. Comparisons between inviscid regularizations and
real fluid flows (Nitsche & Krasny 1994) as well as solutions to the full viscous
problem (Tryggvason, Dahm & Sbeih 1991) indicate good agreement at large scales.
An important open question is whether the limiting behaviour depends on the
regularization, be it viscous or not. This paper compares two inviscid regularizations.

The most common vortex sheet regularization is the vortex blob model, in which
the singular Biot-Savart kernel is replaced by a convolution with an algebraically
decaying smooth function, and the vortex sheet evolution is computed in a Lagrangian
framework moving with the fluid particles. The algebraically decaying smoothing
operator, introduced by Rosenhead (1930), was first applied to planar vortex sheets
(Chorin & Bernard 1973; Anderson 1985; Krasny 1986b) and has since been extended
to axisymmetric and three-dimensional flows (see the reviews by Leonard 1985;
Puckett 1993; Meiburg 1995; Cottet & Koumoutsakos 2000). Alternative regulariza-
tions proposed by Beale & Majda (1985) (see also Cottet & Koumoutsakos 2000) use
smoothing functions with different decay properties in the far field, and were recently
applied to vortex sheets by Baker & Pham (2005). Other kinds of regularizations have
also been proposed. Baker & Shelley (1990) studied constant vorticity layers in the
limit of vanishing thickness and Hou, Lowengrub & Shelley (1997) proposed surface
tension as the regularizing mechanism.

The Euler-alpha model was first introduced in the Euler–Poincaré variational
framework by Holm, Marsden & Ratiu (1998a, b) as a generalization of the Camassa–
Holm shallow-water equation (Camassa & Holm 1993) to the case of n-dimensional
incompressible flow. It may also be found by applying Lagrangian averaging to the
Euler equations and introducing a closure assumption based on Taylor’s hypothesis
that small rapid fluctuations are swept along with the flow. Chen et al. (1999)
introduced viscosity into the Euler-alpha equation and compared its steady solutions
with experimental data for the mean velocity of turbulence in pipes and channels.
The close agreement of this comparison ignited a series of investigations of these
equations as a new type of turbulence model. The Euler-alpha model preserves the
Lie–Poisson Hamiltonian structure of the Euler equations and satisfies a circulation
theorem, so that circulation of filaments is preserved. The Euler-alpha regularization
of vortex filaments is discussed in Holm (2003). Other special features and theoretical
results are reviewed in Holm et al. (1998a, b) and Shkoller (2000). The Euler-alpha
model is usually implemented in an Eulerian framework, and has never before been
applied to compute vortex sheet motion.

Foias, Holm & Titi (2001) show that the Euler-alpha averaging process replaces
the transport velocity by a smoothed velocity obtained by convolution, similar to
the vortex blob case. However, the Euler-alpha regularization stands out: unlike any
regularization previously applied to vortex sheets, the Euler-alpha smoothing function
is unbounded at the origin and is in this sense closer to the unregularized flow. The
natural question that arises is whether and how this affects the vortex sheet evolution.
This is the motivation for the present work. We apply the Euler-alpha regularization
to vortex sheets and compare with known vortex blob results. We also obtain results
for the velocity of regularized circular filaments.

A connection between the Euler-alpha and the vortex blob model has previously
been explored by Oliver & Shkoller (2001), who study the Euler-alpha equations
in a Lagrangian framework. They show that for smooth vorticity distributions, the
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solutions converge as the regularization parameter vanishes. Our paper concerns
weak solutions for singular vorticity distributions, such as filaments and sheets. We
remark that throughout, we denote by Euler-alpha the regularization and associated
convolution operator introduced by Holm et al. (1998a, b) and by vortex blob the
convolution operator used by Chorin & Bernard (1973). This differs from the language
of Oliver & Shkoller (2001), who use vortex blob to denote that, in contrast to previous
formulations of the Euler-alpha model, their scheme is Lagrangian and not Eulerian.

The paper is organized as follows. Section 2 presents the general framework which
describes both the Euler-alpha and the vortex blob regularization. Section 3 presents
the specific smoothing operators in each case, and addresses regularized straight
and circular vortex filaments. Section 4 concerns the linear stability properties of
the regularized vortex sheet. Section 5 compares the regularized vortex sheet motion
for a model problem, both in planar and axisymmetric geometry. The main results
are summarized in § 6. The Appendix presents an analytical approximation of the
self-induced velocity of an axisymmetric filament, regularized by Euler-alpha.

2. The general framework
The following framework is given in Foias et al. (2001). Let v be an incompressible

velocity field. In all the examples in this paper, v is the singular velocity induced by a
vortex filament or a vortex sheet, and therefore is referred to as the singular velocity.
Define

u = L(v) = h � v, (2.1)

where h is in the Sobolev space H 1. Then u is smoother than v and is referred to as
the regularized velocity. Define the singular vorticity q and the regularized vorticity ωωω

by

q = ∇ × v and ωωω = ∇ × u.

Since h ∈ H 1, the convolution operator L commutes with differentiation and therefore
∇ · u = 0 and ωωω = L(q). The Euler-alpha and the vortex blob models are two examples
corresponding to different functions h, which will be given below.

Using Hamilton’s principle, the pair (u, v) can be shown to satisfy the Euler–
Poincaré equation,

∂tv − u × (∇ × v) − ∇Π = 0, (2.2)

where Π is a generalized pressure term. The system (2.2) preserves the Hamiltonian
structure of the Euler equations. The equations of motion can be derived from the
Hamiltonian H (x), which is conserved in time. It is given by

H = 1
2

∫
ψ(x) · q(x) dx = 1

2

∫
u(x) · v(x) dx, (2.3)

where ψ is the streamfunction associated with the regularized velocity u, �ψ = −∇×u.

The form of the Hamiltonian therefore depends on the particular regularizing function
h. Furthermore, if h is invariant under translation and rotation, as is the case for the
Euler-alpha and the vortex blob regularizations, the linear and angular momenta,

L(t) = 1
2

∫
q × x dx =

∫
v dx

and

I (t) = − 1
2

∫
|x|2q dx =

∫
v × x dx,

are also conserved, as outlined in Appendix A.
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Taking the curl of (2.2), we obtain the equivalent evolution equation

∂t q + u · ∇q − q · ∇u = 0, (2.4)

which states that the singular vorticity is convected and stretched by the regularized
velocity. Note that (2.4) implies the circulation theorem

d

dt

∮
c(u)

v · dx = 0, (2.5)

where the loop c(u) moves with the regularized velocity and the integrand contains
the singular velocity. Conversely, Foias et al. (2001) showed that Hamilton’s equations
can be derived from the circulation theorem. The existence of a circulation theorem
distinguishes the Euler-alpha model from large-eddy simulation models for turbulence
such as the Leray model, which do not satisfy a circulation theorem in the inviscid
limit. Since filament circulation is conserved, so is the fluid helicity, given by the
Casimir function, C(t) =

∫
v · q dx. Any regularization (2.1) for which h is invariant

under translation and rotation therefore satisfies the same Hamiltonian properties
and conservation laws as the Euler equations (see Appendix A).

If, in addition, L is invertible, the regularized vorticity satisfies the partial differential
equation

∂tωωω + L(u · ∇q) − L(q · ∇u) = 0, (2.6)

provided q = L−1(ωωω) is sufficiently smooth. For a large class of operators of interest,
it is easy to show that L−1 exists in the proper functional space, as follows. Consider
functions h(x) which depend on r = |x| only. In that case, the operator L is self-adjoint
in the Hilbert space L2. If we further assume that h(r) > 0 and all components of q
are non-negative, as is the case in all our examples, then L∗q =0 means q = 0 almost
everywhere, so KerL∗ =0 and the inverse operator exists. Equation (2.6) solves for
ωωω = Lq. In order to obtain u =Lv, it is necessary for L to commute with curl−1. This
is true since for incompressible fields q on �3, curl−1 = curl(1/�), and L commutes
both with curl and with the integral operator 1/�.

The regularization (2.1) is obtained by specifying the operator L (that is, the
function h) or L−1, if it exists. Alternatively, we can specify a function G such that

u = ∇ × (G � q). (2.7)

The relation between G and h is obtained as follows. Let ψ = G � q. Since u = ∇ × ψ ,
−∇ × u =�ψ and therefore ψ = −�−1∇ × L(v) = −�−1L(q). That is,

G � q = −�−1L(q) (2.8)

and therefore

L(q) = −�G � q = h � q. (2.9)

It follows that

h = −�G.

The next section specifies the smoothing operator for the two specific regularizations
considered in this paper.
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3. Euler-alpha and vortex blob model
3.1. Three-dimensional flow

3.1.1. The Euler-alpha model

The Euler-alpha model refers to the case given by the Helmholtz operator,

L−1 = 1 − α2�, (3.1)

where α > 0 is a numerical parameter. The limit α → 0 corresponds to the
unregularized case u = v. The functions hα and Gα corresponding to this operator in
three dimensions depend on r = |x| only, and are given by

hα(r) =
e−r/α

4πα2r
, (3.2)

Gα(r) =
1 − e−r/α

4πr
. (3.3)

Equation (3.2) follows from the fact that hα is the fundamental solution of the
Helmholtz operator, L−1hα = (1 − α2�)hα = δ3d , where δ3d is the delta-function in
three dimensions, and therefore

L−1(hα � v) = v ⇒ L(v) = hα � v. (3.4)

To confirm (3.3), note that Gα = g−α2hα where g = 1/4πr is the fundamental solution
of the negative Laplacian, �g = −δ, and thus

L−1(−�)Gα = −�L−1Gα = −�(1 − α2�)(g − α2hα)

= −�g + α2�(�g) + α2�(1 − α2�)hα

= δ3d − α2�δ + α2�δ3d = δ3d . (3.5)

Alternatively, we can confirm that hα = −�Gα .
The corresponding regularized velocity induced by a singular vorticity q is obtained

from the relation

uα(x) = ∇ × (Gα � q) = ∇x ×
∫

Gα(|x − y|)q(y) dy

=

∫
∇x × [Gα(ρ)q(y)] dy =

∫
∇x[Gα(ρ)] × q(y) dy

=

∫
G′

α(ρ)∇xρ × q(y) dy =

∫
G′

α(ρ)
x − y

ρ
× q(y) dy

= − 1

4π

∫
1 − e−ρ/α(1 + ρ/α)

ρ3
(x − y) × q(y) dy, (3.6)

where ρ = |x − y|.
3.1.2. The vortex blob model

The vortex blob model consists of regularizing the fluid velocity by convolution,
as in (2.1). It is implemented by transporting vortex filaments with the regularized
velocity while keeping the circulation constant, which solves (2.4) in a Lagrangian
framework. Vortex blob solutions thus fit in the same general framework as the
Euler-alpha model, albeit with a different smoothing operator. The regularization
commonly used is that introduced by Rosenhead (1930), given by

Gδ(r) =
1

4π
√

r2 + δ2
, (3.7)
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with corresponding function

hδ(r) = −�G =
3δ2

4π(r2 + δ2)5/2
(3.8)

and induced velocity

uδ(x) = ∇ × (Gδ � q) =

∫
G′

δ(ρ)
x − y

ρ
× q(y) dy

= − 1

4π

∫
1

(ρ2 + δ2)3/2
(x − y) × q(y) dy. (3.9)

Throughout this paper, this vortex blob regularization is denoted by subscript δ, while
subscripts α denote the classical Euler-alpha regularization. Notice that in the vortex
blob case, the operator L−1 is not stated explicitely. For non-negative components of
the vorticity q, it is known to exist from our earlier remarks, but it does not have a
finite differential operator representation as in the Euler-alpha case.

3.1.3. Behaviour near the origin

Alternative vortex blob kernels such as the one proposed by Beale & Majda (1985)

hσ (r) =
e−r3/σ 3

4πσ 2
(3.10)

have also been used (see Cottet & Koumoutsakos 2000; Baker & Pham 2005). While
those kernels have different decay behaviour from the Rosenhead kernel for large r

(hσ is exponentially decaying while hδ is algebraically decaying), they have similar
behaviour near the origin: all the standard vortex blob regularizations are bounded
at the origin.

The Euler-alpha regularization on the other hand presents a new feature. The
kernel hα is unbounded at the origin, and is, in this sense, closer to the unregularized
case, in which h = δ. This makes a comparison with the vortex blob regularization
particularly interesting. The decay of the Euler-alpha kernel as r → ∞ is exponential.

3.2. Planar flow

3.2.1. The Euler-alpha model

The functions G and h corresponding to L−1 = 1 − α2� in two dimensions are
found using the fundamental solutions g = (1/2π) log r and h =(1/2πα2)K0(r/α) of
the Laplace and the Helmholtz operator, respectively, where Kν is the modified

Bessel function of the second kind and r =
√

x2 + y2. (To confirm that h solves
L−1h = (1−α2�)h= δ2d , where δ2d is the delta-function in two dimensions, use Bessel’s
equation r2K ′′

0 (r) + rK ′
0(r) − r2K0(r)= 0 to show L−1h =0 for r 
= 0, and use the two

properties K0(r) ∼ − log r as r → 0, K0(r) ∼ 1/r as r → ∞ to show
∫

�2 L−1h = 1.)
Using the same arguments as in § 3.1, it follows that in two dimensions

hα(r) =
1

2πα2
K0

(
r

α

)
, (3.11)

Gα(r) = −(g + α2h) = − 1

2π

[
log r + Ko

(
r

α

)]
, (3.12)

Using Bessel’s equation, we can check that h = −�G. Note that as in three dimensions,
Gα is bounded for α > 0, but hα is not.

For the purpose of this paper, we require the corresponding velocity (u, v)(x, y;
xo, yo) at (x, y) induced by a point vortex of strength Γo at (xo, yo) with vorticity
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Figure 1. (a) Azimuthal velocity and (b) scalar vorticity induced by a regularized point vortex
of unit circulation q = δ2d k at distance r from the vortex. Results using the Euler-alpha and
the vortex blob model with α = δ = 0.2 are shown, as indicated.

q =Γoδ2d(x − xo, y − yo)k, where k is the unit vector in the z-direction. From u = ui +
v j = ∇ × ψ = ∇ × (G � q), and using that K ′

o(r) = − K1(r), it follows that

uα(x, y; xo, yo) = Γo

∂Gα

∂y
= − Γo

2π

y − yo

ρ2

[
1 − ρ

α
K1

(
ρ

α

)]
, (3.13a)

vα(x, y; xo, yo) = −Γo

∂Gα

∂x
=

Γo

2π

x − xo

ρ2

[
1 − ρ

α
K1

(
ρ

α

)]
, (3.13b)

where ρ = |x − y| =
√

(x − xo)2 + (y − yo)2. Notice that the regularized velocity is
bounded at the origin since K1(r) ∼ 1/r as r → 0, but the regularized vorticity
ωα(x, y; xo, yo) = −Γo�Gα = Γohα(ρ) is not.

3.2.2. The vortex blob model

The functions G and h corresponding to the vortex blob regularization in planar
two-dimensional flow are

Gδ(r) = − 1

4π
log(r2 + δ2), (3.14)

hδ(r) =
δ2

π(r2 + δ2)2
. (3.15)

The corresponding velocity induced by a point vortex q = Γoδ2d(x − xo, y − yo)k is

uδ(x, y; xo, yo) = − Γo

2π

y − yo

r2 + δ2
, (3.16a)

vδ(x, y; xo, yo) =
Γo

2π

x − xo

r2 + δ2
, (3.16b)

with vorticity ωδ(x, y; xo, yo) = Γohδ(ρ).

3.2.3. Comparison for point vortex

Figure 1 shows the radial velocity and vorticity distributions for a planar point
vortex of unit strength, regularized by the Euler-alpha and the vortex blob model as
indicated, with α = δ =0.2. Here, r is plotted in the vertical direction, and u, ω on the
horizontal. Notice that for α = δ, the maximum velocity is smaller in the Euler-alpha
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case, but the velocity hugs the axis more closely, owing to its more singular nature.
The corresponding vorticity is unbounded at the origin in the Euler-alpha case, but
bounded in the blob case, as discussed earlier. The difference between exponential
and algebraic decay as r → ∞ is not visible at this scale. For r > 1, it is visible in the
vorticity, but not in the velocity. Both velocities decay as 1/r .

3.3. Axisymmetric flow

3.3.1. The Euler-alpha model

Axisymmetric flow is described in cylindrical coordinates (x, y, θ), where x is the
axis of symmetry, y � 0 is the radial coordinate, and θ is the azimuthal coordinate.
In no-swirl axisymmetric flow, the vorticity points in the azimuthal direction and
the vortex filaments are circles centred on the axis. For a single vortex filament of
strength Γo at (x, y) = (xo, yo), the vorticity is a delta-function on the filament,

q = Γoδ2d(x − xo, y − yo)eθ , (3.17)

where eθ = − sin θ ey + cos θ ez is the unit vector in the azimuthal direction, and
ex, ey, ez are unit vectors in the x-, y- and z- directions.

The velocity induced by the circular filament at a point x in the symmetry plane
is obtained from (3.6). Let x = xex + yey be a point in the symmetry plane, and
y = xoex + yo cos θ ey + yo sin θ ez be a point on the vortex filament. Then

ρ = |x − y| =
√

(x − xo)2 + y2 + y2
o − 2yyo cos θ (3.18)

and

(x − y) × eθ = (y cos θ − yo)ex − cos θ(x − xo)ey − sin θ(x − xo)ez.

It follows by symmetry, that the velocity component in the z-direction is zero (i.e. the
azimuthal velocity is zero). The velocity components (u, v) in the x- and y-directions
are given by

uα(x, y; xo, yo) = − Γo

4π

∫ 2π

0

1 − e−ρ/α(1 + ρ/α)

ρ3
(y cos θ − yo) yo dθ, (3.19a)

vα(x, y; xo, yo) =
Γo

4π

∫ 2π

0

1 − e−ρ/α(1 + ρ/α)

ρ3
(x − xo) cos θyo dθ, (3.19b)

Details on how these are computed numerically will be given in § 5.4.1. The
corresponding azimuthal vorticity component ωα = ∂vα/∂x − ∂uα/∂y is most easily
obtained by computing ωωω = hα � q, with h as in (3.2) and q as in (3.17). It is

ωα(x, y; xo, yo) =
Γo

4πα2

∫ 2π

0

e−ρ/α

ρ
cos θ yo dθ. (3.20)

3.3.2. The vortex blob model

It follows from (3.9) and (3.17) that the velocity induced at (x, y) by a vortex
filament of strength Γo positioned at (x, y) = (xo, yo) is

uδ(x, y; xo, yo) = − Γo

4π

∫ 2π

0

y cos θ − yo

(ρ2 + δ2)
3/2

yo dθ, (3.21a)

vδ(x, y; xo, yo) =
Γo

4π

∫ 2π

0

(x − xo) cos θ

(ρ2 + δ2)
3/2

yo dθ, (3.21b)

where ρ is as in (3.18). The integrals in (3.21) can be expressed in terms of elliptic
integrals which can be efficiently evaluated. The corresponding azimuthal vorticity
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Figure 2. (a) Radial velocity and (b) azimuthal vorticity induced by a regularized vortex ring
of unit radius and circulation along a vertical line through the vorticity maximum. Results
using the vortex blob and the Euler-alpha model with α = δ = 0.2. are shown, as indicated.

component ωδ = vx − uy is again computed using ωωω =hδ � q with hδ as in (3.8) and q
as in (3.17). It is

ωδ(x, y; xo, yo) =
3Γoyoδ

2

4π

∫ 2π

0

cos θ

(ρ2 + δ2)5/2
dθ. (3.22)

Alternatively, ωδ can be written in terms of elliptic integrals by differentiating the
corresponding expressions for uδ, vδ .

3.3.3. Comparison for axisymmetric vortex filament

Figure 2 compares the regularized velocity and vorticity on a vertical line x = x0

through a vortex ring of unit radius, y0 = 1, and unit circulation. The maximal absolute
velocities in the vortex blob case are slightly larger, as in the planar case. At the
ring, the Euler-alpha vorticity is unbounded, whereas it is bounded and smooth in
the vortex blob case. Note that in the Euler-alpha case, the vorticity (3.20) can be
expanded in terms of elliptic integrals that blow up logarithmically as (x, y) → (xo, yo).

3.3.4. Self-induced velocity

Consider a circular vortex filament of strength Γ at x = xo with radius yo = R. In
the Appendix, we show that the self-induced velocity under Euler-alpha regularization
is

uα(xo, R) =
Γ

4πR

[
Ein

(
2R

α

)
− 1 + ln(2) − 3α2

8R2
+ O

(
α4

R4

)]
≈ Γ

4πR

[
ln

(
R

α

)
−1+2 ln(2)+0.577220− 3α2

8R2
+error+O

(
α4

R4

)]
, (3.23)

where error< 0.5 × 10−5, assuming that 2R/α > 10.
We can compare this result to the self-induced velocity of a ring of radius R,

circulation Γ , and coresize ε given by (Saffman 1992, § 10.2),

uε(x0, R) =
Γ

4πR

(
log

8R

ε
− 1

4

)[
1 + O

(
ε2

R2
log

R

ε

)]
. (3.24)
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It follows that a circular filament regularized by Euler-alpha has, to first order, the
same velocity as a ring of finite coresize

ε ≈ 2.4α. (3.25)

A circular filament of radius y0 = R, regularized by the vortex blob model, can be
shown to have self-induced velocity

uδ(x0, R) =
1

4πR

[
log

8R

δ
− 1 + O

(
δ2

R2

)]
. (3.26)

Comparing with (3.24) shows this to be roughly the same as the velocity of a ring of
coresize

ε ≈ 2.1δ. (3.27)

Thus, for equal parameter α = δ, the vortex blob model gives a slightly faster self-
induced velocity than the Euler-alpha model.

4. Vortex sheet motion
4.1. Evolution equations

A vortex sheet in either planar or axisymmetric flow is defined by a curve (x(ξ, t),
y(ξ, t)) in a cross-section of the fluid domain, chosen to be the (x, y)-plane, and
by its circulation Γ (ξ ). As before, in the axisymmetric case, x denotes the axis of
symmetry, and y is the radial coordinate. The curve is parameterized with respect
to a Lagrangian variable ξ ∈ I ⊂ � that remains constant along fluid particles.
The circulation Γ (ξ ) is the total circulation between (x(ξ, t), y(ξ, t)) and a particular
particle on the sheet, (x(ξo, t), y(ξo, t)). In the absence of interfacial forces such as
surface tension, the circulation is Lagrangian as well, dΓ/dt =0. The sheet may
therefore also be parameterized by Γ .

The vortex sheet is a superposition of point vortices in the planar case, and circular
vortex filaments in the axisymmetric case. The governing Euler equations are therefore

dx

dt
=

∫
I

u(x, y; x̃, ỹ) dΓ̃ ,
dy

dt
=

∫
I

v(x, y; x̃, ỹ) dΓ̃ , (4.1)

where x = x(Γ, t), y = y(Γ, t), x̃ = x(Γ̃ , t), ỹ = y(Γ̃ , t) and u(x, y, ; x̃, ỹ), v(x, y, ; x̃, ỹ)
are the horizontal and vertical velocities at x, y induced by a point vortex and an
axisymmetric filament at (x̃, ỹ), respectively.

The sheet is subject to the Kelvin–Helmholtz instability. Small perturbations of
a flat sheet, with wavenumber k, grow exponentially fast with magnitude ewt with
dispersion relation

w(k) = k/2. (4.2)

As a result, even with analytic initial data, solutions to (4.1) develop singularities in
finite time, and past this time, numerical discretizations no longer converge. To com-
pute vortex sheet motion past singularity formation, the fluid velocity is regularized
in such a way that the growth rate of the high wavenumber modes is damped,
wδ(k) → 0 as k → ∞.

Here, we regularize the motion by replacing u, v in (4.1) by the Euler-alpha and
vortex blob velocities (3.13), (3.16) and (3.19), (3.21) in the planar and axisymmetric
case, respectively. Before presenting solutions to the full equations, the next section
compares the dispersion relation obtained with the two regularizations.
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4.2. Linear stability analysis

4.2.1. Euler-α regularization

The flat vortex sheet x(Γ, t) =Γ, y(Γ, t) = 0 is an equilibrium solution of the govern-
ing equations. Linear stability results are obtained by considering the evolution of
small perturbations under a linear approximation of the governing equations about
the equilibrium. For the Euler-alpha regularization, the governing equations are

xt = − 1

2π

∫ ∞

−∞

y − ỹ

ρ2

[
1 − ρ

α
K1

(
ρ

α

)]
dΓ̃ . (4.3a)

yt =
1

2π

∫ ∞

−∞

x − x̃

ρ2

[
1 − ρ

α
K1

(
ρ

α

)]
dΓ̃ , (4.3b)

where ρ2 = (x − x̃)2 + (y − ỹ)2, x = x(Γ, t), x̃ = x(Γ̃ , t), etc. Consider a small
perturbation of the flat sheet

x(Γ, t) = Γ + p(Γ, t), y(Γ, t) = q(Γ, t). (4.4)

Substitute into (4.3) and expand the integrands, keeping only linear terms in p, q , to
obtain the linear equations for the perturbation p, q:

pt = − 1

2π

∫ ∞

−∞

q − q̃

(Γ − Γ̃ )2

[
1 − |Γ − Γ̃ |

α
K1

(
|Γ − Γ̃ |

α

)]
dΓ̃ , (4.5a)

qt = − 1

2π

∫ ∞

−∞
(p − p̃)

[
1 − (|Γ − Γ̃ |/α)K1(|Γ − Γ̃ |/α)

(Γ − Γ̃ )2
− Ko(|Γ − Γ̃ |/α)

α2

]
dΓ̃ . (4.5b)

Look for solutions of the form p =P ewteikΓ , q = QewteikΓ . Substitute into (4.5) to
obtain

Pw = − Q

2π

∫ ∞

−∞

1 − eiku

u2

[
1 − |u|

α
K1

(
|u|
α

)]
du, (4.6a)

Qw = − P

2π

∫ ∞

−∞

1 − eiku

u2

[
1 − |u|

α
K1

(
|u|
α

)]
− (1 − eiku)Ko

(
|u|
α2

)
du. (4.6b)

This system can be written as

Pw = −Q

α
I1(αk), Qw = −P

α
I2(αk), (4.7)

where

I1(k) =
1

π

∫ ∞

0

1 − uK1(u)

u2
(1 − cos ku) du, (4.8a)

I2(k) = I1 − 1

π

∫ ∞

0

Ko(u)(1 − cos ku) du. (4.8b)

The system has a non-trivial solution if the dispersion relation,

w2 =
1

α2
I1(αk)I2(αk), (4.9)

is satisfied. Thus, for each wavenumber there is a growing and a decaying mode with
growth rate w(k) = ±

√
I1I2/α. Next, we reproduce these arguments for the vortex

blob method.



160 D. D. Holm, M. Nitsche and V. Putkaradze

4.2.2. Vortex blob regularization

In this case, the governing equations are

xt = − 1

2π

∫ ∞

−∞

y − ỹ

r2 + δ2
dΓ̃ , (4.10a)

yt =
1

2π

∫ ∞

−∞

x − x̃

r2 + δ2
dΓ̃ . (4.10b)

Following the same steps as before, obtain the linear system for P and Q,

Pw = −Q

α
I3(αk), Qw = −P

α
I4(αk), (4.11)

where

I3(k) =
1

2π

∫ ∞

−∞

1 − eiku

u2 + 1
du, (4.12a)

I4(k) = I3 − 1

π

∫ ∞

−∞

1 − eiku

(u2 + 1)2
du. (4.12b)

These integrals can be evaluated using the residue theorem to obtain the dispersion
relation

w2 =
ke−kδ(1 − e−kδ)

4δ
. (4.13)

Krasny (1986a) derived the dispersion relation in the vortex blob case using the
periodic kernel and obtained the dispersion relation

w̃2 =
k̃exp(−k̃ cosh−1(1 + δ̃2))(1 − exp(−k̃ cosh−1(1 + δ̃2)))

4δ̃
√

2 + δ̃2
. (4.14)

The relations (4.13) and (4.14) agree in the limit as δ → 0, with w̃ = w/(2π), k̃ = k/(2π)
and δ̃ =

√
2πδ. That is, with this change of variables, the following holds

lim
δ→0

max
k

(w̃(k) − w(k)) = 0. (4.15)

The difference between (4.13) and (4.14) stems from differences between the regulariza-
tion of the infinite kernel used here and the regularization of the periodic kernel used
by Krasny.

4.2.3. Comparison of dispersion relations

Figure 3 plots the dispersion relations w(k) for the Euler-alpha regularization (solid
curves) and for the vortex blob regularization (dashed curves), for three values of
α = δ = 0.4, 0.2, 0.1, as indicated. The dispersion in the unregularized case, w = k/2, is
also shown (dotted line). Here, the integrals I1, I2 are evaluated numerically.

In both regularizations, the growth rates of the low modes approach the unregu-
larized case as k → 0, while the high modes are damped. In the vortex blob case, it is
evident from (4.13) that w(k) → 0 as k → ∞, exponentially fast.

In the Euler-alpha model, the high modes appear to decay slower. To determine the
decay rate, we investigate the limiting behaviour of I1 and I2 as k → ∞ numerically.
The integrals (4.8) are computed using the trapezoid rule on a finite domain [0, b],
with n points, and b and n are increased until the results have converged to 10 digits
in both parameters. The results are shown in figure 4. Figures 4(a) and 4(b) plot I1

and dI1/dk vs. k, and indicate that I1 → 1/2 as k → ∞. Figure 4(c) plots log I2 vs.
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Figure 3. Linear growth rates w vs. k of a perturbation of a flat vortex sheet, for the Euler-
alpha regularization (solid) and the vortex blob regularization (dashed), with the indicated
values of the parameter α = δ. The dotted curve shows the result in the unregularized case.
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Figure 4. Behaviour of I1, I2 as k → ∞. (a) I1 vs. k. The dashed line indicates the limiting
behaviour I1 → 0.5 as k → ∞. (b) dI1/dk vs. k. (c) log(I2) vs. log k. (d) d(log I2)/d(log k) vs.
log k. The dashed line indicates the limiting behaviour d(log I2)/d(log k) → −1 as k → ∞.
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Figure 5. Potential flow past (a) a flat plate (b) a circular disk.

log k. The curve appears to approach linear behaviour as k → ∞. This is confirmed
by figure 4(d), which plots the slope of the curve, and shows that it approaches −1
as k → ∞. Thus,

I1 → 1
2
, I2 ∼ 1

k
as k → ∞. (4.16)

From this we can conclude that, just as in the vortex blob case, in the Euler-alpha
case w(k) → 0 as k → ∞, but the decay rate is much slower. In the alpha model, the
decay is algebraic, as

wα(k) ∼ k−1/2, (4.17)

while in vortex blob method it is exponential,

wδ(k) ∼
√

ke−kδ/2. (4.18)

Thus, at small scales, the Euler-alpha model is less regularizing than the vortex blob
one, consistent with our earlier remarks regarding the smoothing function h.

5. Model problem
5.1. Initial conditions

This section compares numerical solutions to the full regularized equations for an
example of planar and axisymmetric vortex sheet flow. Following Krasny & Nitsche
(2002), the initial conditions are given by potential flow past a flat plate in the planar
case, and a flat disk in the axisymmetric case, as shown in figure 5. The flow is
determined by Y , the plate half-span or disk radius, and U , the far-field velocity
amplitude. The circulation between the tip of the plate at y = Y and a point with
coordinate y is known to be

Γ (y) = cU
√

Y 2 − y2, (5.1)

where c2d = 2 and c3d = 4/π. Subscripts 2d and 3d refer to the planar and the
axisymmetric case, respectively.

The maximum circulation is Γo = cUY . The results are presented in non-dimensional
form where distance is scaled by Y and time by Y 2/Γo. The vortex sheet position and
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circulation are parameterized by

x(α, 0) = 0, y(α, 0) = cosα, Γ (α) = sinα, α ∈ I, (5.2)

where I2d = [−π/2, π/2] and I3d = [0, π/2], corresponding to Y = 1, Γo = 1 and
U2d =1/2, U3d = π/4. Both initial flows are symmetric about y = 0 and remain so
for all times. Notice that the initial circulation distribution is singular at y =1 and
therefore it is necessary to regularize the flow to compute its evolution.

5.2. Numerical method

The regularized evolution equations are given by (4.1), where u, v are the planar
or axisymmetric Euler-alpha or vortex blob velocities. The equations are solved by
discretizing the sheet by a finite number of points in the upper half-plane with
coordinates (xj (t), yj (t)), j = 0, . . . , N , yj � 0, corresponding to a discretization of
the parameter α ∈ [0, π]. In the planar case, the position of image particles with y < 0
is determined by symmetry. The integrals in (4.1) are approximated by the trapezoid
rule on these points. This yields a system of ordinary differential equations for the
point position

dxi

dt
=

N∑
j=0

uij�Γj ,
dyi

dt
=

N∑
j=0

vij�Γj , (5.3)

where uij = u(xi, yi; xj , yj ), vij = v(xi, yi; xj , yj ), and �Γj are the trapezoid weights,
that is solved using the fourth-order Runge–Kutta method. The sums in (5.3) are
evaluated by direct summation. The numerical cost is halved because uij and uji

share common factors.
The computational meshpoints are initially uniformly spaced in α, corresponding

to increasing point density near the tip of the sheet at y = 1. The initial number
of points is N0. As in previous work (Krasny 1987), at later times, new points are
inserted whenever the angle that two consecutive points make with the vortex centre is
bigger than a given value π/Nc, or when the distance between two consecutive points
is bigger than a given parameter ε, where Nc and ε are user-specified. The points
are inserted using cubic polynomial interpolants. For each value of the parameters
α, δ > 0 shown below, the parameters No, Nc, ε and the time step �t are chosen so
that the solution has converged and remains unchanged under further refinement.
More details on the numerical evaluation of uij , vij in the planar and axisymmetric
case and on the corresponding computational cost are given below.

5.3. Planar case

5.3.1. Computational issues

The modified Bessel function of the second kind, K1, required for the planar
Euler-alpha regularization is evaluated using the routine kzeone.f from the Netlib
repository (2005, http://www.netlib.org). Evaluating these Bessel functions dominates
the computational cost in the Euler-alpha simulations, which is significantly higher
than in the vortex blob simulations. To illustrate, the results presented in the next
subsection for α = δ =0.2 up to time t = 60, use parameters N0 = 400, Nc =30, ε = 0.04
and �t = 0.025, and the final number of points at t = 60 was N = 2762 in the vortex
blob case and N = 4324 in the Euler-alpha case. The computing time was 13.5 min in
the vortex blob case, and 10.5 h in the Euler-alpha case, on a 3.2 GHz PC.

5.3.2. Solution for α = δ = 0.2, up to t = 60

Figure 6 plots the vortex sheet evolution for α = δ = 0.2 and all other parameters
as listed above. The vortex blob results from Krasny & Nitsche (2002) are shown in
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Figure 6. Planar vortex sheet roll-up at the indicated times, computed with α = δ = 0.2.
(a) Vortex blob regularization. (b) Euler-alpha regularization.

figure 6(a), the new Euler-alpha results are shown in figure 6(b). The sheet is plotted
in a reference frame fixed at infinity. In this frame, the initial condition corresponds
to a plate which is impulsively moved to the right with velocity U , and immediately
dissolved. The vortex sheet remaining in the flow moves under its self-induced velocity
in the direction of the impulse as it rolls up at its edges into a spiral. The vorticity is
concentrated at the spiral centre and the roll-up approximates a vortex pair.

The figure shows that, just as in the vortex blob case, the Euler-alpha model
regularizes the motion sufficiently to compute vortex sheet roll-up. The large-scale
features of the roll-up obtained with the two regularizations are similar. The transla-
tion velocity is only slightly faster in the Euler-alpha case. The shape of the outer
vortex sheet turns also appears to be almost identical. However, some differences can
be observed near the vortex centre. At small times (t =10, 20), the roll-up in the alpha
model is tighter near the spiral centre, and contains more spiral turns. The same is
true at later times. Figure 7 plots a closeup of the solution at t = 60. It shows that at
this time as well, while the outer turns are similar, the Euler-alpha roll-up contains
more spiral turns near the vortex centre. The total number of turns is 23 in the vortex
blob case, and 36 in the Euler-alpha case. As a result, the final number of points is
also larger in the Euler-alpha case (N = 4324) than in the vortex blob case (N = 2762),
contributing in part to the increased numerical cost. Finally, the Euler-alpha roll-up
appears to be more regular than the vortex blob one. As shown in the simulations by
Krasny & Nitsche (2002), core vorticity oscillations induce a chaotic resonance band
in the vortex centre, the beginning of which is barely visible in figure 7(a). At the
time t =60 shown here, no irregularities are visible in the Euler-alpha case.

The differences observed near the spiral centre are caused by the differences in
the corresponding smoothing kernels near the origin which were discussed earlier.
Let (xcore, ycore) be the coordinates of the vorticity maximum. To gain more insight,
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Figure 7. Closeup of the planar vortex sheet roll-up at t = 60, computed with α = δ =0.2.
(a) Vortex blob regularization, (b) Euler-alpha regularization.

figure 8 plots the regularized sheet’s horizontal velocity (figure 8a) and vorticity
(figure 8b) along a vertical line x = xcore through the vorticity maximum. Figure 8(b)
shows that the vorticity maximum is attained at approximately the same value of
ycore, although the maximal value is larger in the Euler-alpha than in the blob case.
Furthermore, while the vorticity profile is smooth in the blob case, it has a cusp at the
maximum in the Euler-alpha case. To understand this, remember that in the Euler-
alpha case the vorticity associated with a point vortex, given by (3.11), is unbounded,
with a logarithmic singularity at the origin. Since the logarithm is integrable, the
superposition of point vortices representing the vortex sheet has bounded vorticity.
At its maximum, the vorticity has a cusp with unbounded spatial derivatives.
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Figure 8. (a) Horizontal velocity and (b) scalar vorticity of the planar vortex sheet at t = 60
along a vertical line through the vorticity maximum, regularized by the vortex blob and the
Euler-alpha model with α = δ =0.2, as indicated.

At the vorticity maximum (y = ycore), the horizontal velocity shown in figure 8(a) is
positive and is representative of the vortex translation velocity. The flow rotates about
the vorticity maximum and therefore the velocities are larger for y <ycore and smaller
for y >ycore. The absolute velocities in a region surrounding the core are larger in the
vortex blob case. As a result, the vortex blob vorticity (figure 8b) is slightly larger in
a region surrounding the core, but not at the core.

5.3.3. Dependence on α, δ at t =20

Figures 6–8 show that, while the large-scale spiral features obtained with α = δ = 0.2
agree well, there are differences in the vortex core. We may argue that it is not
appropriate to compare equal values of α and δ, but that they should be chosen, for
example, so that the maximum regularized velocities agree. To estimate the effect of
variations in α and δ better, figures 9 and 10 summarize the results at a fixed time
t = 20, for a range of values α, δ ∈ [0.07, 0.5]. Following Krasny (1986b), figure 9
plots the maximum and minimum y-coordinate ymax on each vortex sheet turn, as a
function of α, δ. Points corresponding to the same vortex sheet turn, starting from
outside, are connected by a curve. The vortex blob results are shown in figure 9(a),
the Euler-alpha results in figure 9(b). The figure indicates the number of spiral turns
for each value of the regularization parameter, and the change in that turn as the
parameter varies. For example, for δ =0.3 there are 6 intersections corresponding to
3 vortex sheet turns in the vortex blob case, and 9 intersections corresponding to 4
1
2

vortex sheet turns in the Euler-alpha case. In each case, the spiral turn amplitudes
slightly increase as the regularization parameter decreases. Based on the results in
this figure, in both cases the values ymax corresponding to the same spiral turn appear
to converge as δ → 0. The shape of the curves differs slightly, but the limiting values
appear to be similar. In agreement with figures 6 and 7, for fixed value δ, the alpha
model has more turns than the vortex blob model. Also, the innermost spiral turn
shown has a larger radius in (a) than in (b), in agreement with figure 7.

Figure 10 plots the circulation parameter Γint at the points of maximum and
minimum y-coordinate on each vortex sheet turn, connected by a curve. Again, these
curves appear to converge as α, δ → 0, and the limits appear to be similar. There
are more curves in figure 10(b) than in figure 10(a), since there are more vortex sheet
turns. A noticeable difference is that the circulation in the inner turns is much smaller
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Figure 9. Maximum and minimum vertical/radial coordinate y on each turn of the planar
vortex sheet at t = 20, for a range of values 0.07 � α, δ � 0.5, using (a) the vortex blob
regularization, and (b) the Euler-alpha regularization.

in the Euler-alpha case than in the vortex blob case. For example, for α = δ =0.1,
the innermost turn contains approximately 30 % of the total circulation in the vortex
blob case, but only 2 % in the Euler-alpha case.

From the results shown in this section, we conclude that, similar to the vortex blob
model, the Euler-alpha model sufficiently regularizes vortex sheet motion to compute
vortex sheet roll-up. However, significant differences are visible near the spiral centre,
independent of specific values of α, δ. The Euler-alpha roll-up contains more spiral
turns in the core and the innermost turn is smaller and has much smaller circulation
than in vortex blob case. While it is expected that as α, δ → 0 the circulation and
radius of the innermost spiral turn vanish, this limit appears to be approached
faster in the Euler-alpha than in the vortex blob case. This reflects the fact that the
Euler-alpha kernel is closer to the unregularized case than the vortex blob kernel.

The next section presents a brief comparison in the axisymmetric case.

5.4. Axisymmetric vortex sheet motion

5.4.1. Computational issues

It is more costly to compute the Euler-alpha velocities, given by (3.19), than to
compute the vortex blob velocities, given by (3.21). The vortex blob integrals in (3.21)
can be expressed in terms of elliptic functions and evaluated fast and accurately using
available algorithms. We use the method of arithmetic–geometric means as proposed
by Bulirsch (1965). In the alpha model, the integrals in (3.19) cannot be reduced to
known functions and must be approximated via numerical integration. Although the
integrands are periodic functions of θ , the behaviour near θ = 0 is almost singular if
(x, y) is near (xo, yo), and accurate integration becomes extremely expensive.
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Figure 10. Circulation Γ at the points of maximum and minimum coordinate y on each turn
of the planar vortex sheet at t = 20, for a range of values 0.07 � α, δ � 0.5, using (a) vortex
blob regularization, (b) the Euler-alpha regularization.

Here, the computational expense is reduced by first rewriting the integrals (3.19a, b)
in terms of functions f1, f2 as follows,

uα(x, y; xo, yo) =
Γoyo

π
[2yf2 − (y − yo)f1], (5.4a)

vα(x, y; xo, yo) =
Γo(x − xo)yo

π
[f1 − 2f2], (5.4b)

where

f1 =

∫ π/2

0

g(r) dφ, f2 =

∫ π/2

0

g(r) sin2 φ dφ, (5.5a)

g(r) =
1 − e−r/α(1 + r/α)

r3
, (5.5b)

r(φ) =

√
(x − xo)2 + (y − yo)2 + 4yyo sin2 φ. (5.5c)

Then, we use the fact that

g(r) ∼ 1

2α2r
, (5.6)

where f ∼ g denotes that f − g is smoother than f , to approximate f1, f2 by elliptic
integrals, as follows

f1 ∼ f̃1 =
1√

a2 + b2
F (c), f2 ∼ f̃2 =

−a2

b2
√

a2 + b2
F (c) +

√
a2 + b2

b2
E(c), (5.7)
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Figure 11. Axisymmetric vortex sheet at the indicated times, computed with (a) vortex blob
regularization (b) Euler-alpha regularization.

where a2 = (x − xo)
2 + (y − yo)

2, b2 = 4yyo, c2 = b2/(a2 + b2), and E and F are the
complete elliptic integrals of the first and second kind. Since fk − f̃k is smoother
than fk , it is integrated accurately using fewer points, and f̃k is evaluated fast using
the method of arithmetic–geometric means. The contribution uij�Γj is computed to
within an error of less than 10−12, using the trapezoid rule. The integration error is
estimated by the difference between two approximations using m and 2m points. If
the difference is larger than the desired error, the number of points is doubled and
the process repeated. The number of points required to evaluate uij ranges between
16 and 4096, depending on how small the corresponding value of a2 is. This method
guarantees overall accuracy at reasonable cost. Nonetheless, the computational cost
is high. The simulation presented below for δ = α = 0.2 up to t = 60 used parameters
Nc = 25, �t = 0.025, No = 400, and the final number of points at t = 60 are N = 6392
and N = 3888 in the vortex blob and Euler-alpha case, respectively. These runs took
took about 4 h in the vortex blob case, and 110 h in the Euler-alpha case.

As an alternative, we considered precomputing f1, f2 on a mesh and interpolating
these values for each required pair (a, b), but found that variations near a = 0 are too
large for this approach to be practical while retaining accuracy.

5.4.2. Solution for α = δ = 0.2, up to t = 60

Figure 11 plots the axisymmetric vortex sheet evolution at the times indicated,
using α = δ = 0.2 and all other parameters as listed above. The vortex blob results
from Krasny & Nitsche (2002) are shown in figure 11(a), the new Euler-alpha results
in figure 11(b). Under both regularizations, the sheet rolls up into an elliptically
shaped vortex ring and translates in the direction of the initial impulse. The sheet
travels slightly faster in the vortex blob case. As in the planar case, the shape of the
outer spiral turns is similar, while the inner spiral roll-up is tighter, more regular and
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Figure 12. Axisymmetric sheet at t = 60, computed with (a) vortex blob regularization
(b) Euler-alpha regularization.

with more spiral turns in the Euler-alpha case. With both regularizations, the ring
develops a tail of particles that leave the bubble of fluid moving with the ring and
are left behind. As discussed by Krasny & Nitsche (2002), this tail corresponds to a
heteroclinic tangle that develops owing to oscillations in the core vorticity. Figure 11
plots only part of the tail at t = 60. A closeup of the full solution is shown in figure 12.

The closeup displays the similarities and differences between the two cases more
clearly. While the elliptical rollup and the shape of the outer spiral turns are similar,
the particle motion is more regular in the Euler-alpha case, both in the tail and in
the core. The Euler-alpha tail is shorter, reflecting the fact that the particle shedding
began slightly later in this case. Furthermore, the Euler-alpha tail has fewer lobes.
A close inspection of figure 12 shows that in the vortex blob case, the tail has six
well-established lobes and three nascent ones, while in the Euler-alpha case there is
one well-established lobe and two nascent ones. As explained by Krasny & Nitsche
(2002), oscillations in the core vorticity are responsible for both irregular particle
motion in the core owing to a resonance band and the formation of a tail owing to a
heteroclinic tangle. Because a tail is present in both cases, we can deduce the presence
of core vorticity oscillations. The fact that the number of lobes in the tail differs
reflects possible differences in the oscillation frequency, which may explain differences
in the regularity of the roll-up. A detailed study of the effect of the regularization on
the irregular behaviour observed in Krasny & Nitsche (2002) is outside the scope of
this paper and will be presented elsewhere.
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Figure 13. (a) Radial velocity and (b) azimuthal vorticity of the axisymmetric vortex sheet at
t =60 along a vertical line through the vorticity maximum, regularized by the vortex blob and
the Euler-alpha model with α = δ = 0.2, as indicated.

To conclude this section, figure 13 compares the regularized horizontal velocity
and the regularized vorticity along a vertical line through the vortex core. As in the
planar case, the vortex blob velocity is slightly larger in a region surrounding the core,
with corresponding larger vorticity values, but at the core, the Euler-alpha vorticity
is larger. As in the planar case, the Euler-alpha vorticity has a cusp at the vorticity
maximum while the vortex blob vorticity is smooth. The cusp in the Euler-alpha case
is the result of integrating the logarithmic singularity in the vorticity associated with
a circular vortex filament, which is integrable.

6. Summary
The Euler-alpha and the vortex blob method are two regularizations of inviscid

fluid flow that share a common framework with two differing kernel functions. In
this paper, we first present the parallels between the two regularizations within the
framework first developed in the Euler-alpha case by Holm et al. (1998a, b). We then
apply the regularizations to vortex filament and vortex sheet motion and compare
the results.

While the vortex blob kernel is bounded and smooth, the Euler-alpha kernel is
unbounded at the origin and thereby closer to the unregularized case. Our numerical
comparison addresses the resulting question of how the difference in the kernel affects
the regularized flow evolution, in the case of singular initial data such as filaments
and sheets. The main results are as follows.

Vortex filament regularization. (i) The vorticity corresponding to a regularized
planar point vortex and a regularized axisymmetric vortex filament is unbounded in
the Euler-alpha case, while bounded in the blob case. (ii) An analytic approximation
for the self-induced velocity of a regularized axisymmetric filament is given. For equal
regularization parameter, the self-induced velocity is higher in the vortex blob case
than in the Euler-alpha case.

Vortex sheet stability. Linear stability analysis of a flat vortex sheet shows that the
Euler-alpha regularization damps the high wavenumber growth, just as the vortex
blob regularization, although at a slower rate. The decay is algebraic instead of
exponential.

Vortex sheet roll-up. The Euler-alpha model, just as the vortex blob model,
sufficiently regularizes planar and axisymmetric vortex sheet motion to compute
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vortex sheet roll-up. The main similarities and differences are as follows. (i) The
large-scale features of the roll-up, such as the shape of the outer vortex sheet turns,
the translation velocity, and the presence of a tail in the axisymmetric case, are in
good agreement. (ii) The Euler-alpha and the vortex blob roll-up differ near the
vortex core. The core vorticity is smooth in the vortex blob case, and bounded but
singular (cusp) in the Euler-alpha case. The Euler-alpha case has significantly more
vortex sheet turns containing the core vorticity, and the roll-up is more regular. (iii)
Differences in the number of lobes of the axisymmetric tail suggest that the increased
regularity is due to differences in core vorticity oscillation frequency and magnitude.
This item, as well as details of the behaviour as the regularization parameter vanishes,
remain to be explored. (iv) The Euler-alpha simulations are computationally more
costly than the vortex blob ones. The planar case requires the evaluation of Bessel
functions; the axisymmetric case requires numerical integration in the azimuthal
direction.
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Appendix A. Conservation laws for Euler-alpha and vortex blob models
Solutions of the vortex blob regularization and the Euler-alpha model both fit

into the same Hamiltonian framework, albeit with different smoothing operators and
thus different Hamiltonian functions. The motion equations are obtained using the
Lie–Poisson bracket,

{F, H} =

∫
q · curl

δF

δq
× curl

δH

δq
d3x.

This Lie–Poisson bracket was first introduced for the Euler equations in Kuznetsov &
Mikhailov (1980) and was discussed further in that context in Marsden & Weinstein
(1983). The Lie–Poisson bracket is defined on the dual with respect to the L2 pairing
〈·, ·〉 of the Lie algebra of divergence-less vector fields. Namely,

{F, H} =

〈
q,

[
δF

δq
,
δH

δq

]〉
.

Being a linear functional of a Lie–algebra bracket, the Lie–Poisson bracket is skew
symmetric and satisfies the Jacobi identity. Thus, it is a bona fide Poisson bracket.

The Hamiltonian takes the same form,

H = 1
2

∫
u · v d3x = 1

2

∫
ψ · q d3x.

In either case, the Lie–Poisson motion equation for circulation vorticity takes the
Euler form,

∂

∂t
q = {q, H} = −curl(q × curlψ) = curl(u × q) = −u · ∇q + q · ∇u,

and thus depends on the particular regularization h chosen, through the relation
u = h ∗ v = curl ψ and their different circulation vorticities q = curl v. As discussed
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in § 3, the regularizing function is h = hα in the Euler-alpha case, and h = hδ in
the vortex blob case. Both of these are invariant under translations and rotations.
Consequently, their Hamiltonians inherit these symmetries. Hence, both models con-
serve the quantities that Poisson-generate these transformations. Namely, they con-
serve the linear momentum

L = 1
2

∫
q × x d3x =

∫
v d3x,

which Poisson-generates spatial translations, and the angular momentum

I = − 1
2

∫
|x|2q d3x =

∫
v × x d3x,

which Poisson-generates spatial rotations. In addition, the Lie–Poisson bracket has
the Casimir function

C =

∫
v · q d3x,

which satisfies {C , H} = 0 for every Hamiltonian H , since its variational derivative
satisfies curl(δC/δq) = 2q. In summary, the vortex blob regularization and the Euler-
alpha model both share the same Hamiltonian properties and conservation laws as
the Euler equations.

Appendix B. Self-induced velocity of a circular vortex filament, regularized
by Euler-alpha

The self-induced velocity of a regularized circular filament of radius R is obtained
from (3.19) by setting x = x0 and y = y0 = R. In this case,

ρ =
√

2R
√

1 − cos θ = 2R sin 1
2
θ = 2R sin φ, φ = 1

2
θ, θ ∈ [0, 2π], (B 1)

which is equal to zero only when θ =0, π. It is therefore easy to see that vα(x0, R;
x0, R) = 0. The filament’s translation velocity is

uα(x0, R; x0, R) =
Γ

4π

∫ 2π

0

1 − e−ρ/α(1 + ρ/α)

ρ3
R2(1 − cos θ) dθ

=
Γ

4π

∫ 2π

0

1 − e−ρ/α(1 + ρ/α)

ρ3

ρ2

2
dθ

=
Γ

4π

∫ π

0

1 − e−ρ/α(1 + ρ/α)

ρ
dφ

=
Γ

2π

∫ π/2

0

1 − e−ρ/α(1 + ρ/α)

ρ
dφ

=
Γ

2π

∫ 2R

0

1 − e−ρ/α(1 + ρ/α)

ρ

dr√
4R2 − ρ2

=
Γ

2π
I, (B 2)

where we used the fact that∫ π

0

f (sin φ) dφ = 2

∫ π/2

0

f (sin φ) dφ.
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The integral I can be estimated by writing I = I0 + (I − I0), where

I0 =
1

2R

∫ 2R

0

1 − e−ρ/α(1 + ρ/α)

ρ
dρ =

1

2R

∫ 2R/α

0

1 − e−x(1 + x)

x
dx

=
1

2R

[∫ 2R/α

0

1 − e−x

x
dx −

∫ 2R/α

0

e−x dx

]
=

1

2R

[
Ein(2R/α) +

(
e−2R/α − 1

)]
. (B 3)

The exponential integral function satisfies

Ein(z) =

∫ z

0

1 − e−x

x
dx =

∫ 10

0

1 − e−x

x
dx +

∫ z

10

1

x
dx −

∫ z

10

e−x

x
dx

= 2.879805 + ln z − ln 10 + error = ln z + 0.577220 + error, (B 4)

where z � 10 and |error| � e−10/10< 0.5 × 10−5. The remaining difference I − I0 can
be evaluated by separating it into two integrals, of which the first can be evaluated
exactly (using a trigonometric substitution) and the second can be approximated
using Taylor series expansions:

I − I0 =

∫ 2R

0

1 − e−r/α(1 + r/α)

r

[
1√

4R2 − r2
− 1

2R

]
dr

=
1

2R

∫ 2R/α

0

1 − e−x(1 + x)

x

[
1√

1 − α2x2/4R2
− 1

]
dx

=
1

2R

{∫ 2R/α

0

1

x

[
1√

1 − α2x2/4R2
− 1

]
dx

−
∫ 2R/α

0

e−x(1 + x)

x

[
1√

1 − α2x2/4R2
− 1

]
dx

}

=
1

2R

{∫ 1

0

1

u

[
1√

1 − u2
− 1

]
du −

∫ 2R/α

0

α2

8R2
x(1 + x) e−x

+ O

(
α4

R4
e−x(1 + x)x3

)
dx

}

=
1

2R

[
ln 2 − 3α2

8R2
+ O

(
α4

R4

)]
, (B 5)

where we used
∫ z

0
xme−x dx = m!+O(e−z). The result is that the self-induced velocity is

u(x0, R) =
Γ

4πR

[
Ein

(
2R

α

)
− 1 + ln(2) − 3α2

8R2
+ O

(
α4

R4

)]
≈ Γ

4πR

[
ln

(
R

α

)
− 1 + 2 ln(2) + 0.577220 − 3α2

8R2
+ error+ O

(
α4

R4

)]
, (B 6)

where error< 0.5 × 10−5, assuming that 2R/α > 10. This result was confirmed
numerically.
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